17. Окружность

Описанная окружность (страница 5)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела 17. Окружность:

Это старая версия каталога задач

Нажмите для перехода на новую версию

Решаем задачи
Задание 29 #6056

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\). Угол \(A\) равен \(97,5^\circ\). Найдите угол \(ADE\). Ответ дайте в градусах.

Показать решение

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=\frac12\cdot 3\alpha=97,5^\circ \quad \Rightarrow \quad \alpha=65^\circ\).

 

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+\beta=360^\circ \quad \Rightarrow \quad \beta=100^\circ\]

Тогда вписанный \(\angle ADE=\frac12\beta=50^\circ\).

Ответ: 50
Задание 30 #6057

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE=3\). \(O\) – точка пересечения отрезков \(BE\) и \(AD\). Найдите \(BO\).

Показать решение

Рассмотрим картинку:


 

1) Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Пусть также \(\buildrel\smile\over{EA}=\beta\).

 

2) \(\angle CBE=\frac12(\alpha+\alpha)=\alpha\), \(\angle BCD=\frac12(\alpha+\beta+\alpha)=\alpha+\frac12\beta\). Следовательно, \(\angle CBE+\angle BCD=2\alpha+\frac12\beta\).

 

Заметим, что вся окружность равна \(360^\circ\), следовательно, \(4\alpha+\beta=360^\circ\), откуда \(2\alpha+\frac12\beta=180^\circ\). Таким образом, \(\angle CBE\) и \(\angle BCD\) – односторонние углы при прямых \(CD\) и \(BE\) и секущей \(BC\). Следовательно, \(CD\parallel BE\).

 

Аналогично доказывается, что \(AD\parallel BC\).

 

3) Значит, \(BCDO\) – параллелограмм (\(BO\parallel CD, BC\parallel OD\)). А в параллелограмме противоположные стороны равны, следовательно, \(BO=CD=3\).

Ответ: 3
Задание 31 #6058

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE=4\sqrt3\), \(\angle A=90^\circ\). Найдите \(AE\).

Показать решение

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=90^\circ=\frac32\alpha\), откуда \(\alpha=60^\circ\).

 

Значит, вписанный \(\angle AEB=\frac12\alpha=30^\circ\). Следовательно, из прямоугольного треугольника \(AEB\)

\[\mathrm{tg}\,30^\circ=\dfrac{AB}{AE} \quad \Rightarrow \quad AE=12.\]

Ответ: 12
Задание 32 #6059

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\), \(AE=6\sqrt3\), \(\angle A=45^\circ\). Найдите радиус описанной около этого пятиугольника окружности.

Показать решение

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=45^\circ=\frac32\alpha\), откуда \(\alpha=30^\circ\).

 

Значит, вписанный \[\angle ABE=\frac12\buildrel\smile\over{AE}= \frac12\left(360^\circ-4\alpha\right)=120^\circ\]

Тогда, т.к. \(\triangle ABE\) – вписанный, то \(\dfrac{AE}{\sin \angle B}=2R\), где \(R\) – радиус данной окружности. Следовательно:

\[\dfrac{AE}{\sin \angle B}=2R \quad \Rightarrow \quad R=6.\]

Ответ: 6
Задание 33 #6060

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\), \(AE=8\sqrt3\), \(\angle A=45^\circ\). Найдите высоту треугольника \(ACE\), опущенную из вершины угла \(C\).

Показать решение

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=45^\circ=\frac32\alpha\), откуда \(\alpha=30^\circ\).

 

Тогда \(\angle CAE=\frac12\cdot 2\alpha=30^\circ\).

 

Заметим, что \(\triangle ACE\) – равнобедренный (\(\angle A=\angle E=\alpha\)), следовательно, \(CH\) – высота и медиана, то есть \(AH=\frac12\cdot AE=4\sqrt3\). Значит:

\[\mathrm{tg}\,30^\circ=\dfrac{CH}{AH} \quad \Rightarrow \quad CH=4.\]

Ответ: 4
Задание 34 #6061

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\). Радиус этой окружности равен \(5\). Найдите радиус окружности, описанной около треугольника \(BQD\), где \(Q\) – точка пересечения отрезков \(AD\) и \(BE\).

Показать решение

Рассмотрим картинку:


 

1) Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Пусть также \(\buildrel\smile\over{EA}=\beta\).

 

2) \(\angle CBE=\frac12(\alpha+\alpha)=\alpha\), \(\angle BCD=\frac12(\alpha+\beta+\alpha)=\alpha+\frac12\beta\). Следовательно, \(\angle CBE+\angle BCD=2\alpha+\frac12\beta\).

 

Заметим, что градусная мера всей окружности равна \(360^\circ\), следовательно, \(4\alpha+\beta=360^\circ\), откуда \(2\alpha+\frac12\beta=180^\circ\). Таким образом, \(\angle CBE\) и \(\angle BCD\) – односторонние углы при прямых \(CD\) и \(BE\) и секущей \(BC\). Следовательно, \(CD\parallel BE\).

 

Аналогично доказывается, что \(AD\parallel BC\).

 

3) Значит, \(BCDQ\) – параллелограмм (\(BQ\parallel CD, BC\parallel QD\)). А в параллелограмме противоположные стороны равны, следовательно, \(BQ=CD=BC=DQ\). То есть \(BCDQ\) – ромб.

 

4) Таким образом, \(\triangle BCD=\triangle BQD\). Значит, и радиусы описанных около этих треугольников окружностей равны. Но радиус описанной около \(\triangle BCD\) окружности равен радиусу описанной около пятиугольника \(ABCDE\) окружности. Следовательно, ответ \(5\).

Ответ: 5
Задание 35 #6062

Около трапеции описана окружность. Периметр трапеции равен \(22\), средняя линия равна \(5\). Найдите боковую сторону трапеции.

Показать решение



Так как трапеция вписана в окружность, то трапеция является равнобедренной, следовательно, \(AB=CD\). Средняя линия равна полусумме оснований, следовательно, \(AD+BC=2\cdot 5=10\). Тогда \[AB+BC+CD+AD=10+2AB=22\quad\Rightarrow\quad AB=6.\]

Ответ: 6
1

...

4

5

6
Рулетка
Вы можете получить скидку в рулетке!