15. Решение неравенств

Решение рациональных неравенств

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела 15. Решение неравенств:

Это старая версия каталога задач

Нажмите для перехода на новую версию

Решаем задачи
Задание 1 #2500

Решите неравенство \[x+10<3x^2\]

Показать решение

Перенесем слагаемые в левую часть: \[-3x^2+x+10<0\] Разложим на множители выражение \(-3x^2+x+10\): \[-3x^2+x+10=0 \quad \Rightarrow \quad x_1=2\quad\text{и}\quad x_2=-\dfrac53\] Следовательно, \(-3x^2+x+10=-3(x-2)\left(x-\frac53\right)=-(x-2)(3x+5)\).
Тогда неравенство примет вид \[-(x-2)(3x+5)< 0\quad \Rightarrow \quad (x-2)(3x+5)>0\] Решим его методом интервалов:



Таким образом, подходят \(x\in \left(-\infty;-\frac53\right)\cup(2;+\infty)\).

Ответ:

\(\left(-\infty;-\frac53\right)\cup(2;+\infty)\)

Задание 2 #2501

Решите неравенство \[x^2+34x+289>0\]

Показать решение

Заметим, что по формуле квадрата суммы \(x^2+34x+289=(x+17)^2\), следовательно, неравенство принимает вид: \[(x+17)^2>0\] Решим его методом интервалов:


 

Таким образом, нам подходят \(x\in(-\infty;-17)\cup(-17;+\infty)\).

Ответ:

\((-\infty;-17)\cup(-17;+\infty)\)

Задание 3 #2502

Решите неравенство \[x^2-4x+4\leqslant 0\]

Показать решение

Заметим, что по формуле квадрата разности \(x^2-4x+4=(x-2)^2\), следовательно, неравенство принимает вид: \[(x-2)^2\leqslant 0\] Решим его методом интервалов:


 

Таким образом, нам подходят \(x\in\{2\}\).

Ответ:

\(\{2\}\)

Задание 4 #2503

Решите неравенство \[x^2+3x+3\geqslant 0\]

Показать решение

Разложим на множители выражение \(x^2+3x+3\), для этого решим уравнение \(x^2+3x+3=0\). Оно имеет отрицательный дискриминант, следовательно, не разлагается на множители и принимает значения одного знака: либо положительно, либо отрицательно при всех \(x\). Проверить его знак можно, подставив вместо \(x\) любое число, например, \(x=0\): получим \(3\), следовательно, выражение всегда \(>0\).



Таким образом, нам подходят \(x\in \mathbb{R}\).

Ответ:

\(\mathbb{R}\)

Задание 5 #2412

Решите неравенство

\[\begin{aligned} \dfrac{(x - 1)(x + 2)}{(x - 3)(x + 4)}\leqslant 0 \end{aligned}\]

Показать решение

ОДЗ:

\[\begin{aligned} (x - 3)(x + 4)\neq 0 \end{aligned}\]

Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения \[(x - 1)(x + 2) = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = 1,\qquad\qquad x = -2\]

2) Найдём нули знаменателя: \[(x - 3)(x + 4) = 0\qquad\Leftrightarrow\qquad \left[ \begin{gathered} x = 3\\ x = -4 \end{gathered} \right.\]

По методу интервалов:



откуда \[x\in(-4; -2]\cup[1; 3)\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\((-4; -2]\cup[1; 3)\)

Задание 6 #3762

Решить неравенство \[\dfrac 6{x\sqrt3-3}+\dfrac{x\sqrt3-6}{x\sqrt3-9}\geqslant 2\]

(Задача от подписчиков)

Показать решение

Пусть \(x\sqrt3-3=t\). Тогда \[\dfrac 6t+\dfrac{t-3}{t-6}\geqslant 2\quad\Leftrightarrow\quad \dfrac{t^2-15t+36}{t(t-6)}\leqslant 0\quad\Leftrightarrow\quad \dfrac{(t-3)(t-12)}{t(t-6)}\leqslant 0\] Решая данное неравенство методом интервалов, получим \(0<t\leqslant 3\) или \(6<t\leqslant 12\). Следовательно, \[\left[\begin{gathered}\begin{aligned} &0<x\sqrt3-3\leqslant 3\\ &6<x\sqrt3-3\leqslant 12\end{aligned}\end{gathered}\right.\quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sqrt3<x\leqslant 2\sqrt3\\ &3\sqrt3<x\leqslant 5\sqrt3 \end{aligned}\end{gathered}\right.\]

Ответ:

\((\sqrt3;2\sqrt3]\cup(3\sqrt3;5\sqrt3]\)

Задание 7 #2413

Решите неравенство

\[\begin{aligned} \dfrac{(x + 1)(x - 2)}{(x + 3)(x^2 + 4)}\leqslant 0 \end{aligned}\]

Показать решение

ОДЗ:

\[\begin{aligned} (x - 3)(x^2 + 4)\neq 0 \end{aligned}\]

Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения \[(x + 1)(x - 2) = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = -1,\qquad\qquad x = 2\]

2) Найдём нули знаменателя: \[(x + 3)(x^2 + 4) = 0\] так как \(x^2\geqslant 0\), то \(x^2 + 4\geqslant 4\), следовательно, нули знаменателя: \[x = -3\]

По методу интервалов:



откуда \[x\in(-\infty; -3)\cup[-1; 2]\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\((-\infty; -3)\cup[-1; 2]\)

1

2

...

6

Согласно статистике ФИПИ, довольно часто в ЕГЭ рациональные неравенства, решаемые методом интервалов, вызывают сложности у школьников как из Москвы, так и из других городов. Поскольку задания на данную тему встречаются как в базовом, так и в профильном уровне экзамена по математике, уметь выполнять их необходимо всем без исключения. Для того чтобы восполнить пробелы в знаниях о рациональных неравенствах и других разделах науки и максимально эффективно и качественно подготовиться к сдаче ЕГЭ, воспользуйтесь образовательным порталом «Школково».

Что мы предлагаем?

Наш ресурс предоставляет вам уникальную возможность грамотно выстроить процесс подготовки к сдаче аттестационного испытания. Прежде всего выпускникам из Москвы и других городов, которым предстоит в скором времени решить ЕГЭ, мы предлагаем повторить теорию по теме «Рациональные неравенства». Благодаря многолетнему практическому опыту наших специалистов материал изложен грамотно и доступно. Каждое определение сопровождается примерами с подробным объяснением способа решения. После того как вы освежили в памяти теорию, предлагаем закрепить материал и выполнить задания из ЕГЭ на решение рациональных неравенств. В раздел «Каталог» мы регулярно добавляем новые интересные задачи. Выполняя их, вы сможете отточить свои навыки.

Рулетка
Вы можете получить скидку в рулетке!