5. Решение уравнений

Кубические уравнения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела 5. Решение уравнений:

Это старая версия каталога задач

Нажмите для перехода на новую версию

Кубическое уравнение – уравнение вида \[{\large{ax^3+bx^2+cx+d=0}},\]

где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.

 

Кубическое уравнение всегда имеет как минимум один корень \(x_1\).
Значит, всегда выполнено: \(ax^3+bx^2+cx+d=a(x-x_1)(x^2+mx+n)\), где \(m, n\) – некоторые числа.

 

\({\color{red}{I.}}\) Кубические уравнения вида \[x^3=a\]

для любого числа \(a\) имеют единственный корень

\[x=\sqrt[3]a\]

Пример.

Решением уравнения \(x^3=-8\) является \(x=\sqrt[3]{-8}=-2\).

 

\({\color{red}{II.}}\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\) в некоторых случаях можно решить, разложив на множители левую часть.

 

Пример.

Решить уравнение \(5x^3-x^2-20x+4=0\).

 

Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]

Тогда корнями данного уравнения являются \(x_1=-2, x_2=2, x_3=\frac15\).

 

В некоторых задачах полезными могут оказаться формулы сокращенного умножения:

\[\begin{aligned} &(x\pm y)^3=x^3\pm3x^2y+3xy^2\pm y^3\\ &x^3\pm y^3=(x\pm y)(x^2\mp xy+y^2) \end{aligned}\]

 

\({\color{red}{III.}}\) Кубические уравнения вида \(ax^3+bx^2+cx+d=0\), в которых не удается разложить левую часть на множители, можно решить другим способом: подобрать рациональный корень, если таковой имеется.

 

Для этого можно использовать следующие утверждения:

\(\blacktriangleright\) Если сумма \(a+b+c+d=0\), то корнем уравнения является число \(1\).

 

\(\blacktriangleright\) Если \(b+d=a+c\), то корнем уравнения является число \(-1\).

 

\(\blacktriangleright\) Пусть \(a,b,c,d\)\({\color{blue}{\text{целые}}}\) числа. Тогда если уравнение имеет рациональный корень \(\large{\dfrac{p}{q}}\), то для него будет выполнено:

 

\(d\) делится нацело на \(p\);  \(a\) делится нацело на \(q\).

 

Пример.

1. У уравнения \(7x^3+3x^2-x-9=0\) сумма коэффициентов равна \(7+3-1-9=0\), значит, \(x=1\) является корнем (не обязательно единственным) этого уравнения.

 

2. У уравнения \(4,5x^3-3x^2-0,5x+7=0\) выполнено: \(4,5-0,5=-3+7\), значит, \(x=-1\) является корнем этого уравнения.

 

3. У уравнения \(2x^3+5x^2+3x-3=0\) коэффициенты — целые числа, поэтому можно подбирать корень: делители свободного члена \(-3\) : \(\pm 1, \pm 3\); делители старшего коэффициента \(2\): \(\pm1, \pm2\). Значит, возможные комбинации рациональных корней: \[\pm 1, \ \pm\dfrac12, \ \pm 3, \ \pm \dfrac32\]

Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):

 

\[2\cdot \left(\frac12\right)^3+5\cdot \left(\frac12\right)^2+3\cdot \frac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Заметим, что если у уравнения коэффициенты — рациональные числа, то домножением уравнения на их общих знаменатель можно получить равносильное ему уравнение с целыми коэффициентами. Например, уравнение \(\frac12x^3+\frac16x+2=0\) после умножения на \(6\) сводится к уравнению с целыми коэффициентами: \(3x^3+x+12=0\).

Решаем задачи
Задание 1 #325

Найдите корень уравнения \((2x + 1)^3 = 27\). Если уравнение имеет более одного корня, в ответе запишите больший из них.

Показать решение

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((2x + 1)^3 = 3^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = 3\), откуда заключаем, что \(x = 1\) – подходит по ОДЗ.

Ответ: 1
Задание 2 #326

Найдите корень уравнения \((2x + 1)^3 = -27\). Если уравнение имеет более одного корня, в ответе запишите больший из них.

Показать решение

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((2x + 1)^3 = (-3)^3\) стандартного вида, оно эквивалентно уравнению \(2x + 1 = -3\), откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Ответ: -2
Задание 3 #327

Найдите корень уравнения \((3x + 2)^3 = -64\). Если уравнение имеет более одного корня, в ответе запишите больший из них.

Показать решение

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((3x + 2)^3 = (-4)^3\) стандартного вида, оно эквивалентно уравнению \(3x + 2 = -4\), откуда заключаем, что \(x = -2\) – подходит по ОДЗ.

Ответ: -2
Задание 4 #328

Найдите корень уравнения \((7x + 11)^3 = 64\). Если уравнение имеет более одного корня, в ответе запишите больший из них.

Показать решение

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((7x + 11)^3 = 4^3\) стандартного вида, оно эквивалентно уравнению \(7x + 11 = 4\), откуда заключаем, что \(x = -1\) – подходит по ОДЗ.

Ответ: -1
Задание 5 #329

Найдите корень уравнения \((-x - 11)^3 = 216\). Если уравнение имеет более одного корня, в ответе запишите больший из них.

Показать решение

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

Исходное уравнение \((-x - 11)^3 = 6^3\) стандартного вида, оно эквивалентно уравнению \(-x - 11 = 6\), откуда заключаем, что \(x = -17\) – подходит по ОДЗ.

Ответ: -17
Задание 6 #2610

Решите уравнение \(8x^3-36x^2+54x-27=0\).

Показать решение

Заметим, что левая часть представляет из себя куб разности: \[(2x)^3-3\cdot (2x)^2\cdot 3+3\cdot (2x)\cdot3^2-3^3=0\quad\Leftrightarrow\quad (2x-3)^3=0\quad\Leftrightarrow\quad x=\frac32.\]

Ответ: 1,5
Задание 7 #2611

Найдите больший корень уравнения \(8x^3+12x^2+6x+1=0\).

Показать решение

Заметим, что левая часть представляет из себя куб суммы: \[(2x)^3+3\cdot (2x)^2\cdot 1+3\cdot (2x)\cdot1^2+1^3=0\quad\Leftrightarrow\quad (2x+1)^3=0\quad\Leftrightarrow\quad x=-\frac12.\]

Ответ: -0,5

1

2

...

5

В ЕГЭ кубические уравнения встречаются как в профильном, так и в базовом уровне. Это значит, что уметь верно решать подобные задания необходимо каждому школьнику. Некоторые могут сказать, что количество баллов в ЕГЭ за решение уравнений третьей степени невелико и тратить на них время нецелесообразно. С этим трудно согласиться. Во-первых, в ЕГЭ крайне важен каждый бал, во-вторых, уравнения третьей степени не так уж и сложны, если уделить им должное внимание в ходе подготовки. Для того чтобы учащийся мог оперативно и, главное, правильно выполнить подобные задания, стоит воспользоваться нашим образовательным ресурсом.

«Школково» — это уникальная платформа, которая позволяет выпускникам из Москвы и других регионов с любым уровнем математических знаний научиться решать кубические уравнения, а также другие виды, например, тригонометрические уравнения и эффективно подготовиться к сдаче ЕГЭ. Прежде всего мы рекомендуем вам начать с повторения или изучения теоретического материала по данной теме. «Школково» представляет вниманию учащихся из Москвы и других городов, которые готовятся к ЕГЭ, по сути, авторское пособие, в котором ясно и доступно изложен материал по теме «Кубические уравнения».

Помимо изложения основных определений и формул, вы сможете познакомиться с примерами по теме и изучить способы их решения. При этом стоит отметить, что наши специалисты подобрали весьма интересные варианты. Для того чтобы вы научились уверенно решать экзаменационные задачи, нужна тренировка. Поэтому рекомендуем вам затем перейти в раздел «Каталог» и приступить к самостоятельной работе с уравнениями третьей степени.

Рулетка
Вы можете получить скидку в рулетке!